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Thermodynamics of itinerant magnets is studied using a classical model with one parameter characterizing
the degree of itinerancy. Monte Carlo simulations for bcc and fcc lattices are compared with the mean-field
approximation and with the Onsager cavity field approximation extended to itinerant systems. The qualitative
features of thermodynamics are similar to the known results of the functional integral method. It is found that
magnetic short-range order is weak and almost independent on the degree of itinerancy, and the mean-field
approximation describes the thermodynamics reasonably well. Ambiguity of the phase space measure for
classical models is emphasized. The Onsager cavity field method is extended to itinerant systems, which
involves the renormalization of both the Weiss field and the on-site exchange interaction. The predictions of
this approximation are in excellent agreement with Monte Carlo results.
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I. INTRODUCTION

The thermodynamics of magnetic materials is often de-
scribed using the Heisenberg model in which the spins are
attached to lattice sites. Real magnets are much more com-
plicated because the magnetization is due to band electrons
whose degree of localization varies between different mate-
rials. This so-called itinerancy manifests itself in the fluctua-
tion of the magnitudes of the local moments, which may be
defined in a muffin-tin sphere or using a projection in an
appropriate basis. Thus, the degree of itinerancy may be
characterized by the relative importance of longitudinal and
transverse �rotational� fluctuations of the local moments.1 In
the localized �Heisenberg� limit the longitudinal spin fluctua-
tions �LSF� have a large energy scale and are suppressed.
This limit is approached in some magnetic insulators. Met-
als, on the other hand, are often quite far from this limit
because the exchange splitting, and the bandwidth are typi-
cally of the same order. Experimentally, itinerancy is most
clearly revealed in the paramagnetic susceptibility by the de-
viation of the effective moment found from the Curie-Weiss
�CW� constant from the true local moment, as well as by the
deviations from the Curie-Weiss law.

A large amount of work has been devoted to the thermo-
dynamics of itinerant magnets using phenomenological
Ginzburg-Landau models for weak ferromagnets1–3 or the
Hubbard model and the functional integral methods.1,4–6

These studies have clarified the role of LSF in thermodynam-
ics and explained the observed behavior of the paramagnetic
susceptibility. However, these methods are unsuitable for
quantitative studies of realistic materials. Ginzburg-Landau
expansions, as is well known, correctly describe only the
contribution of long-wave fluctuations and must always be
rigged with a wave vector cutoff. Such models are useful
in the studies of critical phenomena, but they are irrelevant
to the determination of the critical temperature itself, which
is determined by short-range fluctuations.7 An unsatisfac-
tory signature of Ginzburg-Landau models is the absence
of any information on the short-wave components of the
exchange interaction in the resulting expressions for the Cu-

rie temperature.2,3,8 In our opinion, the neglect of short-wave
fluctuations in these models makes their predictions for mag-
netic short-range order �MSRO� also unreliable. The func-
tional integral method, on the other hand, suffers from the
necessity to make severe and ambiguous approximations.9

Magnetic thermodynamics has also been studied using
density functional theory �DFT� by treating spin fluctuations
within the adiabatic approximation10 assuming that the rel-
evant fluctuations are well represented by constrained11 non-
collinear ground states. The most widespread approach is the
disordered local moment �DLM� approximation10,12 which
relies on the single-site approximation and is designed to
approximate the DFT ground state of a system with random
directions of the local moments. The LSF have been ne-
glected in all implementations of this approach so far, re-
stricting its application to magnets which are close to the
localized limit. In particular, the DLM method neglecting
LSF fails for �strongly itinerant� nickel where it finds van-
ishing local moment in the paramagnetic phase.13

Other authors studied itinerant thermodynamics by map-
ping the results of first-principles energies for various spin
configurations �including both transverse and longitudinal
fluctuations� to a classical Hamiltonian in which variable lo-
cal moments play the role of dynamical variables, and then
exploring the thermodynamics of this Hamiltonian using ei-
ther the variational principle in reciprocal space14 or Monte
Carlo �MC� simulations in real space.15–17 These calculations
clearly show that LSF, as expected, are very important in
nickel. Moreover, they revealed only weak MSRO above the
Curie temperature Tc for both Fe and Ni, which is similar to
the Heisenberg model. These results are consistent with the
fact that in any lattice model with no frustration, all correla-
tion corrections to the mean-field approximation �outside of
the critical region� should be small in the parameter 1 /z,
where z is the number of neighbors within the interaction
range.18 On the other hand, very strong MSRO above Tc was
found19 in Ni using the ab initio spin dynamics method,
which, similar to DLM, is based on the adiabatic approxima-
tion and neglects LSF.

Classical models with variable local moments seem to
capture the important qualitative features of the thermody-
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namics of itinerant magnets which are similar to the predic-
tions of the functional integral method. However, these mod-
els have been built and studied only for a few particular
materials, and a general study of their thermodynamic prop-
erties has not been undertaken. Such a study is useful as a
step to more refined models with the advantage that numeri-
cally exact results for a classical model are easily accessible
through Monte Carlo simulations. Therefore, in this paper we
explore the thermodynamics of a classical spin-fluctuation
model as a function of the degree of itinerancy using MC
simulations and simple analytic approximations. We empha-
size that here we are not concerned with the “mapping” pro-
cedure �which can be quite challenging� but rather focus on
the other separate part of the program, i.e., on the determi-
nation of thermodynamics once the Hamiltonian has been
defined. We therefore restrict ourselves to the simplest pos-
sible realization of this model which includes only one free
parameter characterizing the degree of itinerancy.

II. MODEL

Our model is a lattice version of the phenomenological
model of Murata and Doniach2 written with a vector order
parameter1
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Here mi denotes the magnetic moment at site i whose length
is unrestricted, and I is the Stoner exchange-correlation pa-
rameter. We have separately written the local �00

−1=�Bi /�mi
and nonlocal Jij =−�ij

−1 parts of the unenhanced inverse sus-
ceptibility. This model involves a number of simplifying as-
sumptions. �1� It is classical in the sense that mi are dynami-
cal variables and not operators. �2� Both local and nonlocal
parts of the inverse susceptibility are considered to be inde-
pendent of the magnetic state and isotropic. In general, �ij

−1 is
a Cartesian tensor which depends on the magnetic state and
reduces to a scalar only in the paramagnetic state. �3� Non-
linear effects are included only through a local fourth-order
term, similar to the Murata-Doniach model.

Model �1� is somewhat similar to that used to represent
the unified spin-fluctuation theory4 classically �see Ref. 1,
Ch. 7, and also Ref. 20�, with an important difference: the
energy of LSFs is included as a function of local dynamical
variables mi, rather than that of one global parameter �mi

2�.
This difference is similar to that between the Heisenberg
model and the spherical approximation to it.

In the ground state all local moments are parallel, and we
recover the Stoner model which is ferromagnetic if IN�EF�
�1, where N�EF�=��0� is the density of states at the Fermi
level in the nonmagnetic state. This Stoner criterion can also
be written as �I+J0���00

−1 where J0=� jJij. On the other
hand, in the paramagnetic or nonmagnetic matrix, local mo-
ments exist in the Anderson sense only if I��00

−1 which is
stricter than the Stoner criterion. We will call this the Ander-
son criterion. �Note that �00

−1�1 /�00.�

Introducing reduced local moments xi=mi /m0, where m0
is the value of all mi at T=0, the Hamiltonian �1� can be
conveniently parametrized

H� �
H

J0m0
2 = �

i

E�xi� −
1

2�
i�j

Jij

J0
xi · x j , �2�

where E�x�= 	ax2 /2+bx4 /4
 /J0 with a=�00
−1− I and b=Bm0

2

=J0−a. For the nearest-neighbor model with coordination
number z we have Jnn /J0=1 /z, and for the given lattice H�
contains only one parameter, which we define as �
=arctan b /a. Note that b�0 is equivalent to the Stoner cri-
terion, and a�0 is equivalent to the Anderson criterion.21

To understand the meaning of the parameter �, consider
the ground state of Hamiltonian H with a single-site excita-
tion, i.e., the state with mi=m0 for all i except i=c. The
energy of this state has a minimum at mc=m0 and its curva-
ture with respect to the longitudinal fluctuation of mc is K�

=J0+2b, while the curvature with respect to transverse fluc-
tuations is K�=J0. Their ratio K� /K�=1+ �2b /J0� character-
izes the relative importance of longitudinal and transverse
fluctuations. If b�J0, the fluctuations are mainly transverse,
and we have the localized �Heisenberg� limit for which
a�−b and ��3� /4. If b�J0, the transverse and longitudi-
nal spin fluctuations are equally important; this limit corre-
sponds to �=0. The Anderson criterion is equivalent to �
�� /2. Thus, the parameter � characterizes the degree of
itinerancy and is similar to those appearing in other
theories.1,4 Note that we always have K� /K��1, even
though the macroscopic longitudinal stiffness is proportional
to b and tends to zero at �→0.

Evaluation of the thermodynamic properties involves tak-
ing a trace over the quantum states or a functional integral
over the classical degrees of freedom. To our knowledge, in
all classical models reported so far and based on ab initio
calculations, the uniform measure in the space of mi was
used.14–17 However, our dynamical variables are not canoni-
cal, and therefore the phase space measure �PSM� is not
known. In the case when LSF are important, the PSM has to
be supplied along with the Hamiltonian as an additional phe-
nomenological ingredient. Strictly speaking, it is not possible
to disentangle the measure from quantum statistics; for ex-
ample, in the atomic limit only integer moments with atomic
multiplet degeneracies should be present. Ambiguity of PSM
is intrinsic to all microscopic classical spin-fluctuation mod-
els including the classical version of the “unified theory” of
Moriya and Takahashi �Ref. 1, Sec. VII� and its extensions,20

as well as the functional integral approach combined with the
static approximation which destroys the correct quantum op-
erator properties. In the latter case, the Hubbard-Stratonovich
transformation can be applied with the interaction term writ-
ten in different ways, which produce different results after
the static approximation is made.5,9 Two particular choices
discussed by Hubbard5 result in different measures in the
space of fluctuating fields vi: uniform in one case, and in-
volving the weighting factor ivi

−2 in another. To explore the
influence of PSM on thermodynamics, we will consider these
two measures in the space of the local moments mi.
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III. THERMODYNAMIC PROPERTIES: MONTE CARLO
AND MEAN-FIELD RESULTS

Monte Carlo simulations for model �2� were performed
using the Metropolis algorithm for bcc and fcc lattices with
nearest-neighbor exchange. At each step the new random di-
rection and magnitude of the moment on one site was tried,
and sampling of the moment magnitude was performed ac-
cording to the chosen PSM. We used supercells with up to
3456 or 6912 sites for bcc or fcc lattices �12�12�12 unit
cells with periodic boundary conditions�. The reduced Curie
temperature tc=Tc / �J0m0

2� was found using the fourth-order
cumulant method,22 and the paramagnetic susceptibility was
calculated using the fluctuation-dissipation theorem.

In the mean-field approximation �MFA� the magnetization
is found from the self-consistency condition �xz�
=� ln Z1 /��	hW�, where

Z1 = �
0




g�x�x
2 sinh�	hWx�

	hW
e−	E�x�dx �3�

is the single-site partition sum, hW= �xz� is the reduced Weiss
field, and g�x� is the weighting factor, which is either 1 or x−2

for the two chosen PSM’s. E�x� is defined after Eq. �2�, and
	=1 / t is the inverse reduced temperature.

Figure 1 shows the temperature dependence of magneti-

zation, the average square of the local moment and the para-
magnetic susceptibility using the reduced variables accord-
ing to Eq. �2�. Results are shown for two values of �: 0.48�
and 0.69�. In both cases the agreement between MC and
MFA results is very good for all properties �MFA overesti-
mates Tc by 20% or less�. The results strongly depend on
PSM, especially in the more itinerant case �=0.48�. In par-
ticular, for the uniform PSM a second-order phase transition
occurs for both values of �, but for the PSM with g�x�
=x−2 the phase transition is of first order for �=0.48�, and
Tc is nearly 2.8 times smaller compared to that for g�x�=1.

As seen in Fig. 1, below Tc the average �x2� declines with
temperature due to the decrease in the Weiss field, which
causes the maximum of the distribution function to shift to
smaller moments. This is in agreement with earlier
results.1,5,6,14,15,17 The width of the distribution function in-
creases with temperature, which counteracts the decrease in
the local moment. The PSM with g�x�=x−2 puts less weight
on the states with large moments, and hence �x2� drops much
faster compared to the uniform PSM. If the Anderson crite-
rion is not satisfied ���� /2� then the most probable mo-
ment in the paramagnetic state is zero. In this case, �x2�
increases with temperature above Tc as seen in Fig. 1�c�. On
the other hand, if the Anderson criterion is satisfied, the local
moment may slightly decrease in a range of temperatures
above Tc, as seen for g�x�=x−2 in Fig. 1�d�.

The magnetic susceptibility above Tc is shown in Figs.
1�e� and 1�f�. In MC simulations it is calculated using
fluctuation-dissipation theorem, while in MFA we directly
consider the response of the system to the external magnetic
field. Excellent agreement between MFA and MC is ob-
served except for the small error in Tc. In MFA one obtains
above Tc

�MFA =

1

3
�x2�

t −
1

3
�x2�

. �4�

This formula looks similar to the Curie-Weiss expression in
the Heisenberg model, but here �x2� depends on temperature,
which leads to a renormalization of the CW constant and
deviations from the CW law. The CW constant C=d�−1 /dt
�for a second-order phase transition� is now given by

C =
3

�x2�tc��
�1 − � d log�x2�

d log t �
tc

� . �5�

Thus, in addition to the usual Heisenberg term the Curie
constant has a contribution due to the temperature depen-
dence of �x2� 	second term in square brackets in Eq. �5�
. As
a result, the effective moment squared xeff

2 =3 /C deviates
from �x2�. As discussed above, �x2� usually increases with
temperature above Tc, which, according to Eq. �5�, reduces C
and increases xeff

2 . Moreover, for the uniform PSM �x2� in-
creases faster with temperature compared to PSM with
g�x�=x−2, and hence the CW constant is much smaller in this
case 	see Fig. 1�f� and also Fig. 1�e�, where the transition is
however of first order
.

FIG. 1. �Color online� 	�a� and �b�
 Reduced magnetization �xz�,
	�c� and �d�
 mean squared local moment �x2�, and 	�e� and �f�

inverse paramagnetic susceptibility �−1 as a function of the reduced
temperature t=T / �J0m0

2�. MFA results are shown by solid �blue on-
line� lines for g�x�=1 and by dashed black lines for g�x�=x−2. MC
results are displayed by black circles for g�x�=1 and by red �gray�
squares for g�x�=x−2 �in both cases the symbols are filled for fcc
and empty for bcc lattice�. The inset in panel �e� highlights the
region close to tc for the bcc lattice with g�x�=1 and also shows the
results of the generalized Onsager method �black line connecting
the MC points�.
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In Fig. 2 some thermodynamic properties of the system
are plotted as a function of the itinerancy parameter �. From
Eq. �4� it follows that the MFA value of tc for the second-
order phase transition is found by solving the equation 3tc
= �x2�tc��, where �x2�t�� is fully determined by E�x� in Eq.
�2�. This is an easy way to estimate Tc for an itinerant system
using first-principles data for E�x�, J0m0

2, and the assumed
PSM. However, for PSM with g�x�=x−2 the transition is of
first order except for a small region close to the local-
moment limit �in MFA the tricritical point where the order of
the phase-transition changes is at �tr=0.632��. Therefore, in
general one must consider the minima of the free energy as a
function of the magnetization, which can also be easily done
in MFA. Note that the order of the phase transition depends
on the details of the model and can change if, for example,
the dependence of the exchange parameter on the magneti-
zation is taken into account. In particular, the phase transition
for the model of Ni is of first order in Ref. 14 	as seen from
the abrupt drop of M�T� and Ms at Tc in their Fig. 2
 and in
Ref. 17 �as seen from the abrupt drop of m̄ in their Fig. 6�,
even though the uniform PSM was used in both of these
models.

From Fig. 2 we see that when the transition is of second
order, MFA overestimates Tc by about 20%, which is typical
for the Heisenberg model. When the transition is of first or-
der, MFA gives an almost exact Tc. It is important that even
for the second-order transition the overestimation of Tc in
MFA does not depend on the degree of itinerancy. This is
consistent with the fact that the degree of MSRO, which is
shown in Fig. 2�b� for T=1.1Tc, is quite small and stays
essentially constant in the whole range of �. Thus, in our

model itinerancy does not lead to strong short-range order.
This result agrees with Refs. 15 and 17 where weak short-
range order was found for the models of Fe and Ni. Note that
if the exchange interaction extends to more than one shell of
neighbors and stays mainly ferromagnetic, the MFA validity
criterion is satisfied even better, and the MSRO parameter
should further decrease. Similar to the Heisenberg model,
strong MSRO may only be expected in low-coordinated lat-
tices or in the presence of frustration when for some pairs
Jij /kTc is not small.

The square of the effective moment xeff
2 is also shown in

Fig. 2 for the uniform PSM �dashed-dotted line�. In the local
limit xeff naturally tends to 1. However, as � is decreased
toward zero, the ratio xeff

2 / �x2�tc�� increases and eventually
becomes much larger than 1. Similar behavior is found in
functional integral theories.1

IV. GENERALIZED ONSAGER CORRECTION FOR
ITINERANT SYSTEMS

Onsager introduced the concept of a cavity field in the
theory of polar liquids, which is designed to go beyond the
molecular-field approximation by including short-range or-
der effects.23 The cavity field is the effective internal field
which orients polar molecules in the ferroelectric phase. On-
sager observed that each molecule polarizes the surrounding
liquid and thereby generates a reaction field acting back on
the molecule. However, this field is always parallel to the
molecule’s dipole moment and hence does not affect its ori-
entation. Therefore, for a liquid with permanent dipoles the
reaction field must be subtracted from the mean molecular
field, the result being the cavity field. Onsager also noted that
the reaction field enhances the dipole moments of real mol-
ecules due to their polarizability.

The cavity field method was successfully applied to
Ising24 and Heisenberg25 magnets which have permanent
magnetic moments. Cyrot26 noted that Moriya-Kawabata’s
self-consistent renormalization theory for the Hubbard model
may be essentially reproduced by using Onsager-type argu-
ments; more recently this method was implemented
numerically.27 However, the actual physics there is very dif-
ferent; Cyrot’s approach seeks the correlation correction with
respect to the Hartree-Fock solution, which is unrelated to
short-range order. Onsager’s method was also applied to itin-
erant nickel,13 but, as we will see below, correct generaliza-
tion to itinerant systems with LSF requires an additional in-
gredient which was missed in Ref. 13.

We now generalize Onsager’s method to magnets with
LSF described by Hamiltonian �1�. Consider model �1�
above Tc in a small external collinear magnetic field Hi

extez.
We pick site 0 and integrate out the degrees of freedom from
all the other sites in the partition function to obtain the ef-
fective Hamiltonian in the form of a generating functional
for the lattice with a cavity.18 Expanding this functional
around the atomic limit to order 1 /z we obtain

Heff
0 = E�m0� − m0�H0

ext + �
i

J0i�mi
c�� −

m0
2

2 �
ij

J0iJ0j�ij
c ,

�6�

where the superscript c refers to the lattice with a cavity, i.e.,
with site 0 removed, and we used the fluctuation-dissipation

FIG. 2. �Color online� �a� Reduced Curie temperature tc and �b�
MSRO parameter �cos �nn� at T=1.1Tc as a function of the itiner-
ancy parameter � for the bcc lattice. Solid black line, red �gray�
squares, and blue �dark gray� circles show the results of MFA, MC,
and the generalized Onsager method for g�x�=1, respectively.
Dashed black line and empty black squares depict MFA and MC
results for g�x�=x−2. Green �light gray� triangles represent the in-
complete Onsager reaction field correction with the on-site interac-
tion left unrenormalized. The blue �gray� dashed-dotted line in the
upper panel shows the effective moment xeff

2 found from the Curie
constant for g�x�=1 in MFA. Very similar results were obtained for
the fcc lattice �not shown�.
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theorem to express the pair correlator through the suscepti-
bility.

In order to find the magnetization and susceptibility of the
lattice with a cavity we need to solve the “impurity prob-
lem.” Using the linked-cluster expansion technique,28 the
longitudinal susceptibility of the original lattice can be writ-
ten as follows:

�̂ = �̂ + �̂Ŵ�̂ , �7�

where Ŵ is the effective interaction that satisfies the equation

Ŵ= Ĵ+ Ĵ�̂Ŵ, and �̂ is the one-bond-irreducible “polarization
operator” which may be shown to be local to first order in
1 /z.29 	All quantities in Eq. �7� are matrices in site indices.

Removal of site 0 may be formally represented by a pertur-

bation �̂=−�00�0i�0j to �̂. �The renormalization of � j j for
j�0 due to removal of site 0 is at least of order 1 /z2.� Thus,
denoting the effective interaction matrix for the cavity lattice

as Ŵc, we may write Ŵc
−1−Ŵ−1=−�̂. Using Eq. �7� and the

fact that �̂ is diagonal, we find

�ij
c = �ij −

�i0�0j

�00
. �8�

The average local moments Mi
c= �mi

c� for the lattice with a
cavity are

Mi
c = �

j

�ij
c Hj

ext = Mi −
�i0

�00
M0, �9�

where Mi is the average local moments of the complete lat-
tice without the cavity. The value of H0

ext does not affect Mi
c

�as expected�, therefore in the right-hand side of Eq. �9� we
may take Mi and M0 for the actual field distribution.

From the effective Hamiltonian �6� we can find the mag-
netization at site 0

M0 = �̃0H̃W, �10�

where

H̃W = H0
ext + �

i

J0i�Mi −
�i0

�00
M0� �11�

is the renormalized effective field �cavity field�, and �̃0 is the
renormalized bare �atomic-limit� susceptibility. The latter
may be written as �̃0= �m2�� /3T, where the average para-
magnetic squared local moment �m2�� is calculated using a

renormalized on-site exchange Ĩ= I+� with �=�ijJ0iJ0j�ij
c .

This renormalization of the bare susceptibility is the essential
ingredient needed to extend Onsager’s theory to itinerant
magnets. It has no effect in the localized limit where m2 is
constant.

As usual, we now obtain the Fourier transform of the
susceptibility

�q =
�̃0

1 − �̃0�Jq − ��
, �12�

where �=�qJq�q /�00. We used the same symbol � as above

in the definition of Ĩ because these expressions are identical,

as can now be shown with the help of Eqs. �12� and �8�.
Equation �12� with the definitions of �, �̃0, and Ĩ form a
closed set of equations for the paramagnetic susceptibility.
Note that Eq. �12� automatically leads to a sum rule �00
= �̃0, which agrees with the fluctuation-dissipation theorem.

At the Curie temperature �q diverges at q=0. Therefore,
from Eq. �12� we obtain Tc= 1

3J0�m2�Tc��� /G, where G
=�q�1−Jq /J0�−1 is the diagonal element of the lattice
Green’s function.25 Note that the value of � at Tc is equal to
J0�1−G−1� and independent of the degree of itinerancy �.

The reduced Curie temperature tc and MSRO parameter
�cos �nn� at T=1.1Tc calculated in this way are shown in Fig.
2 for the bcc lattice and the PSM with g�x�=1. The agree-
ment with MC results is excellent in the whole range of �.
We repeated these calculations for the fcc lattice and found
excellent agreement with MC as well. The accuracy of the
predicted tc may be seen from Table I. Similar performance
for bcc and fcc lattices suggests that this approximation is
not very sensitive to the connectivity of the lattice. The para-
magnetic susceptibility is also shown in Fig. 1�e� for �
=0.48�, bcc lattice, and uniform PSM. The agreement with
MC results is essentially perfect outside of the narrow criti-
cal region.

The first-order terms in the 1 /z expansion derived above
introduce two corrections to MFA. The first one is the sub-
tracted mean reaction field; this correction reduces the mag-
netization. This is the only correction in Onsager’s method
for systems with permanent moments. The second correction
described by the last term in Eq. �6� adds back the fluctuating
reaction field which is always parallel to the moment on the
central site. For the Heisenberg �or Ising� model this second
correction has no effect, but in itinerant systems it always
increases the local moments and hence the Curie tempera-
ture. There is a strong cancellation between these two cor-
rections in itinerant systems and improvement compared to
MFA may be achieved only if both of them are included.
Indeed, if the renormalization of the Stoner parameter is not
taken into account 	i.e., if the last term in Eq. �6� is dropped
,
we find a spurious strong suppression of Tc for itinerant sys-
tems, as shown in Fig. 2�a�.

It is interesting to compare the generalized Onsager
method with the Horwitz-Callen �HC� approximation which
is based on the “ring subset” of diagrams for the generating
functional � in the linked-cluster technique.28,30 In this
method, the second-order self-field G2 is found by differen-
tiating � with respect to the renormalized second cumulant
M2, while M2 is represented by an integral containing G2 as
a parameter. This technique does not assume any particular
form for the atomic limit, and therefore it can be used in our
case including LSF as well. In the HC method, the on-site
correlator may be found as K00=M2+2M2

2G2, and the sum
rule K00=1 is not satisfied in the paramagnetic Heisenberg
magnet. However, it is easy to check that the value of K00 at
Tc is smaller than 1 by less than a percent in bcc and fcc
lattices. In Onsager’s method for the Heisenberg model, the
sum rule K00=1 is used to fix M2 instead of the integral
representation as in the HC method. The results for Tc are
therefore very close. We found that this close similarity re-
mains in the entire range of �, as seen from Table I. The
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generalized Onsager’s method is, however, technically much
simpler.

V. CONCLUSIONS

We have studied the thermodynamics of a simple classical
spin-fluctuation model allowing for a variable degree of itin-
erancy. This model is qualitatively similar to those used be-
fore to study the thermodynamics of Fe and Ni using first-
principles data.14,15,17 It is worth emphasizing that the main
drawback of using classical spin models of this type is the
ambiguity of the phase space measure. As we showed above,
the thermodynamics is very sensitive to this measure for sys-
tems with even intermediate degree of itinerancy. While the
energetics of constrained spin configurations may, at least in
principle, be accurately mapped using DFT calculations, it is
not known �to our knowledge� how and whether the phase
space measure can be supplied in a realistic way.

In the present work, we focused on the general features
of the model rather than on the determination of its param-
eters from principles. We found that the thermodynamic
properties are similar to the results of the functional integral

approach.1,4–6 Further, we found that the mean-field approxi-
mation is qualitatively valid, and short-range order is weak
and almost independent on the degree of itinerancy up to the
strongly itinerant limit where the paramagnetic susceptibility
is dominated by longitudinal fluctuations. This is in agree-
ment with earlier results for the models of Fe and Ni �Refs.
15 and 17�; it is clear that this is a general feature of the
classical model with no frustration.

Further, we generalized the Onsager cavity field method
to itinerant systems using an expansion around the atomic
limit to first order in 1 /z. Both the interatomic exchange
constant and the Stoner parameter are renormalized by short-
range order. When both these corrections are included, the
Curie temperature is in excellent agreement with Monte
Carlo results. However, simple subtraction of the Onsager
reaction field is a very poor approximation.
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